Search results for " Kainic acid"

showing 10 items of 10 documents

Encephalitis with Autoantibodies against the Glutamate Kainate Receptors GluK2

2021

OBJECTIVE: The objective of this study was to report the identification of antibodies against the glutamate kainate receptor subunit 2 (GluK2-abs) in patients with autoimmune encephalitis, and describe the clinical-immunological features and antibody effects. METHODS: Two sera from 8 patients with similar rat brain immunostaining were used to precipitate the antigen from neuronal cultures. A cell-based assay (CBA) with GluK2-expressing HEK293 cells was used to assess 596 patients with different neurological disorders, and 23 healthy controls. GluK2-ab effects were determined by confocal microscopy in cultured neurons and electrophysiology in GluK2-expressing HEK293 cells. RESULTS: Patients'…

0301 basic medicinePathologymedicine.medical_specialtyAutoimmunityKainate receptor03 medical and health sciences0302 clinical medicineReceptors Kainic AcidAntigenCerebellummedicineAnimalsHumansReceptorencephalitis ; autoantibodies ; GluK2AutoantibodiesNeuronsAutoimmune encephalitisbiologyAutoimmunitatbusiness.industryAutoantibodyGlutamate receptorEncefalitismedicine.diseaseRatsHEK293 Cells030104 developmental biologyNeurologybiology.proteinEncephalitisNeurology (clinical)Antibodybusiness030217 neurology & neurosurgeryEncephalitisAnnals of Neurology
researchProduct

Peroxisome proliferator-activated receptor-γ coactivator-1α mediates neuroprotection against excitotoxic brain injury in transgenic mice: role of mit…

2016

Peroxisome proliferator-activated receptor gamma coactivator-1α (PGC-1α) is a transcriptional coactivator involved in the regulation of mitochondrial biogenesis and cell defense. The functions of PGC-1α in physiology of brain mitochondria are, however, not fully understood. To address this we have studied wild-type and transgenic mice with a two-fold overexpression of PGC-1α in brain neurons. Data showed that the relative number and basal respiration of brain mitochondria were increased in PGC-1α transgenic mice compared with wild-type mitochondria. These changes occurred concomitantly with altered levels of proteins involved in oxidative phosphorylation (OXPHOS) as studied by proteomi…

0301 basic medicineProgrammed cell deathKainic acidTransgenebcl-X ProteinPeroxisome proliferator-activated receptorBiologyInhibitor of apoptosisSettore BIO/09 - FisiologiaNeuroprotectionOxidative PhosphorylationInhibitor of Apoptosis ProteinsMice03 medical and health scienceschemistry.chemical_compoundXIAP0302 clinical medicineBrain InjurieInhibitor of Apoptosis ProteinAnimalsCA1 Region HippocampalCells CulturedNeuronschemistry.chemical_classificationNeuroscience (all)Kainic AcidCell DeathAnimalNeuron survivalGeneral NeuroscienceProteomicXIAP; Kainic acid; Mitochondria; Neuron survival; PGC-1α; Proteomics; Animals; Brain Injuries; CA1 Region Hippocampal; Cell Death; Cells Cultured; Inhibitor of Apoptosis Proteins; Kainic Acid; Mice; Mitochondria; Neurons; Oxidative Phosphorylation; Peroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alpha; Proto-Oncogene Proteins c-bcl-2; bcl-X Protein; Neuroscience (all)NeuronPeroxisome Proliferator-Activated Receptor Gamma Coactivator 1-alphaMitochondriaCell biologyXIAP030104 developmental biologyProto-Oncogene Proteins c-bcl-2chemistryMitochondrial biogenesisBrain InjuriesImmunologyPGC-1α030217 neurology & neurosurgeryEuropean Journal of Neuroscience
researchProduct

Exploring kainate receptor pharmacology using molecular dynamics simulations.

2010

Ionotropic glutamate receptors (iGluRs) are enticing targets for pharmaceutical research; however, the search for selective ligands is a laborious experimental process. Here we introduce a purely computational procedure as an approach to evaluate ligand–iGluR pharmacology. The ligands are docked into the closed ligand-binding domain and during the molecular dynamics (MD) simulation the bi-lobed interface either opens (partial agonist/antagonist) or stays closed (agonist) according to the properties of the ligand. The procedure is tested with closely related set of analogs of the marine toxin dysiherbaine bound to GluK1 kainate receptor. The modeling is set against the abundant binding data …

AgonistModels Molecularmedicine.drug_classProtein ConformationIn silicoKainate receptorPharmacologyMolecular Dynamics SimulationLigandsPartial agonistArticleTurn (biochemistry)Cellular and Molecular NeuroscienceStructure-Activity RelationshipReceptors Kainic AcidmedicineStructure–activity relationshipPharmacologyAlanineMolecular StructureChemistryBridged Bicyclo Compounds HeterocyclicIonotropic glutamate receptorMarine ToxinsMarine toxinProtein BindingNeuropharmacology
researchProduct

Bruce/apollon promotes hippocampal neuron survival and is downregulated by kainic acid

2005

Prolonged or excess stimulation of excitatory amino acid receptors leads to seizures and the induction of excitotoxic nerve cell injury. Kainic acid acting on glutamate receptors produces degeneration of vulnerable neurons in parts of the hippocampus and amygdala, but the exact mechanisms are not fully understood. We have here investigated whether the anti-apoptotic protein Bruce is involved in kainic acid-induced neurodegeneration. In the rat hippocampus and cortex, Bruce was exclusively expressed by neurons. The levels of Bruce were rapidly downregulated by kainic acid in hippocampal neurons as shown both in vivo and in cell culture. Caspase-3 was activated in neurons exhibiting low level…

MaleKainic acidCell SurvivalBiophysicsExcitotoxicityBruce/apollon Hippocampus Kainic acid Excitotoxicity Neuronal death Caspase-3 Cytochrome cDown-RegulationHippocampusStimulationBiologyHippocampal formationmedicine.disease_causeHippocampusBiochemistrychemistry.chemical_compoundDownregulation and upregulationmedicineAnimalsRats WistarMolecular BiologyCells CulturedNeuronsKainic AcidDose-Response Relationship DrugNeurodegenerationGlutamate receptorCell Biologymedicine.diseaseRatsCell biologynervous systemchemistryBiochemistryUbiquitin-Conjugating Enzymeshuman activitiescirculatory and respiratory physiology
researchProduct

Neural overexcitation and implication of NMDA and AMPA receptors in a mouse model of temporal lobe epilepsy implying zinc chelation.

2006

Summary: Purpose: Zinc chelation with diethyldithiocarbamate (DEDTC) during nondamaging kainic acid administration enhances excitotoxicity to the level of cell damage. The objective of this work was to study the developing of the lesion in this model of temporal lobe epilepsy and the implications of the different types of glutamate receptors. Methods: The antagonist of the N-methyl-d-aspartate (NMDA) receptor MK-801, and the antagonist of the α-amino-3-hydroxy-5-methyl-4-isoxazolepropionate (AMPA) receptor GYKI52466, were used concomitantly with intraperitoneal administration of kainic acid (15 mg/kg) followed by DEDTC (150 mg/kg) in mouse. The animals were killed at different times from 4 …

MaleKainic acidmedicine.medical_specialtyExcitotoxicityHippocampusKainate receptorHSP72 Heat-Shock ProteinsAMPA receptorBiologymedicine.disease_causeHippocampusReceptors N-Methyl-D-AspartateSynaptic Transmissionchemistry.chemical_compoundBenzodiazepinesMiceReceptors Kainic AcidInternal medicinemedicineAnimalsReceptors AMPACell damageChelating AgentsKainic AcidCell DeathGlutamate receptormedicine.diseaseDisease Models AnimalZincEndocrinologyNeuroprotective Agentsnervous systemNeurologychemistryEpilepsy Temporal LobeNMDA receptorNeurology (clinical)Dizocilpine MaleateDitiocarbProto-Oncogene Proteins c-fosEpilepsia
researchProduct

Involvement of cyclin-dependent kinase-5 in the kainic acid-mediated degeneration of glutamatergic synapses in the rat hippocampus.

2011

Increased levels of glutamate causing excitotoxic damage accompany neurological disorders such as ischemia/stroke, epilepsy and some neurodegenerative diseases. Cyclin-dependent kinase-5 (Cdk5) is important for synaptic plasticity and is deregulated in neurodegenerative diseases. However, the mechanisms by which kainic acid (KA)-induced excitotoxic damage involves Cdk5 in neuronal injury are not fully understood. In this work, we have thus studied involvement of Cdk5 in the KA-mediated degeneration of glutamatergic synapses in the rat hippocampus. KA induced degeneration of mossy fiber synapses and decreased glutamate receptor (GluR)6/7 and post-synaptic density protein 95 (PSD95) levels in…

MaleNeuronsKainic Acidhippocampuynaptic degenerationCalpainIntracellular Signaling Peptides and ProteinsMembrane ProteinsCyclin-Dependent Kinase 5Settore BIO/09 - FisiologiaHippocampusRatsReceptors Kainic AcidNerve DegenerationSynapsescyclin-dependent kinase-5Excitatory Amino Acid AgonistsAnimalsHumansCalciumRats WistarDisks Large Homolog 4 ProteinCells CulturedThe European journal of neuroscience
researchProduct

Molecular and functional interactions between tumor necrosis factor-alpha receptors and the glutamatergic system in the mouse hippocampus: Implicatio…

2009

Tumor necrosis factor (TNF)-alpha is a proinflammatory cytokine acting on two distinct receptor subtypes, namely p55 and p75 receptors. TNF-alpha p55 and p75 receptor knockout mice were previously shown to display a decreased or enhanced susceptibility to seizures, respectively, suggesting intrinsic modifications in neuronal excitability. We investigated whether alterations in glutamate system function occur in these naive knockout mice with perturbed cytokine signaling that could explain their different propensity to develop seizures. Using Western blot analysis of hippocampal homogenates, we found that p55(-/-) mice have decreased levels of membrane GluR3 and NR1 glutamate receptor subuni…

Malemedicine.medical_specialtyReceptors Kainic acidMicrodialysisAction PotentialsGlutamic AcidKainate receptorAMPA receptorIn Vitro TechniquesBiologyHippocampusReceptors N-Methyl-D-Aspartateelectrophysiology microiontophoresisSettore BIO/09 - FisiologiaMicechemistry.chemical_compoundGlutamatergicReceptors Kainic AcidSeizuresInternal medicinemedicineAnimalsReceptors Tumor Necrosis Factor Type IIReceptors AMPAMice KnockoutNeuronsInflammationTumor Necrosis Factor-alphaGeneral NeuroscienceGlutamate receptorProtein SubunitsEndocrinologymedicine.anatomical_structureReceptors Glutamatenervous systemchemistryReceptors Tumor Necrosis Factor Type IMetabotropic glutamate receptorAstrocytesCytokinesNMDA receptorNBQXDisease SusceptibilityAstrocyte
researchProduct

Pharmacological activity of C10-substituted analogs of the high-affinity kainate receptor agonist dysiherbaine

2009

Kainate receptor antagonists have potential as therapeutic agents in a number of neuropathologies. Synthetic modification of the convulsant marine toxin neodysiherbaine A (NDH) previously yielded molecules with a diverse set of pharmacological actions on kainate receptors. Here we characterize three new synthetic analogs of NDH that contain substituents at the C10 position in the pyran ring of the marine toxin. The analogs exhibited high-affinity binding to the GluK1 (GluR5) subunit and lower affinity binding to GluK2 (GluR6) and GluK3 (GluR7) subunits in radioligand displacement assays with recombinant kainate and AMPA receptors. As well, the natural toxin NDH exhibited approximately 100-f…

Models MolecularAgonistKainic acidPatch-Clamp TechniquesTime FactorsStereochemistrymedicine.drug_classProtein subunitGreen Fluorescent ProteinsGlutamic AcidKainate receptorAMPA receptorMolecular Dynamics SimulationLigandsTransfectionTritiumBinding CompetitiveArticleMembrane PotentialsRadioligand AssayStructure-Activity RelationshipCellular and Molecular Neurosciencechemistry.chemical_compoundReceptors Kainic AcidExcitatory Amino Acid AgonistsmedicineRadioligandHumansReceptoralpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic AcidCell Line TransformedPharmacologyAlanineKainic AcidDose-Response Relationship DrugMolecular StructureChemistryBridged Bicyclo Compounds HeterocyclicProtein SubunitsBiochemistryMutagenesis Site-DirectedMarine toxinNeuropharmacology
researchProduct

Full Domain Closure of the Ligand-binding Core of the Ionotropic Glutamate Receptor iGluR5 Induced by the High Affinity Agonist Dysiherbaine and the …

2009

The prevailing structural model for ligand activation of ionotropic glutamate receptors posits that agonist efficacy arises from the stability and magnitude of induced domain closure in the ligand-binding core structure. Here we describe an exception to the correlation between ligand efficacy and domain closure. A weakly efficacious partial agonist of very low potency for homomeric iGluR5 kainate receptors, 8,9-dideoxyneodysiherbaine (MSVIII-19), induced a fully closed iGluR5 ligand-binding core. The degree of relative domain closure, approximately 30 degrees , was similar to that we resolved with the structurally related high affinity agonist dysiherbaine and to that of l-glutamate. The ph…

Models MolecularAgonistStereochemistrymedicine.drug_classGlutamic AcidKainate receptorCrystallography X-RayLigandsBiochemistryPartial agonistCell LineReceptors Kainic AcidmedicineHumansComputer SimulationAmino AcidsReceptorMolecular BiologyAlanineBinding SitesChemistryMechanisms of Signal TransductionGlutamate receptorHydrogen BondingCell BiologyBridged Bicyclo Compounds HeterocyclicLigand (biochemistry)Protein Structure TertiaryProtein SubunitsIonotropic glutamate receptorProtein BindingIonotropic effectJournal of Biological Chemistry
researchProduct

Novel Analogs and Stereoisomers of the Marine Toxin Neodysiherbaine with Specificity for Kainate Receptors

2007

Antagonists for kainate receptors (KARs), a family of glutamategated ion channels, are efficacious in a number of animal models of neuropathologies, including epilepsy, migraine pain, and anxiety. To produce molecules with novel selectivities for kainate receptors, we generated three sets of analogs related to the natural marine convulsant neodysiherbaine (neoDH), and we characterized their pharmacological profiles. Radioligand displacement assays with recombinant alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and KARs demonstrated that functional groups at two positions on the neoDH molecule are critical pharmacological determinants; only binding to the glutamate receptor …

PharmacologyAgonistAlaninemedicine.drug_classChemistryProtein subunitStereoisomerismKainate receptorAMPA receptorBridged Bicyclo Compounds HeterocyclicLigand (biochemistry)ArticleCell LineReceptors Kainic AcidBiochemistryConvulsantmedicineHumansMolecular MedicineMarine ToxinsReceptorMarine toxinJournal of Pharmacology and Experimental Therapeutics
researchProduct